Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems.
نویسندگان
چکیده
Previous studies showed that temperature and total organic carbon in drinking water would cause chlorine dioxide (ClO(2)) loss in a water distribution system and affect the efficiency of ClO(2) for Legionella control. However, among the various causes of ClO(2) loss in a drinking water distribution system, the loss of disinfectant due to the reaction with corrosion scales has not been studied in detail. In this study, the corrosion scales from a galvanized iron pipe and a copper pipe that have been in service for more than 10 years were characterized by energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The impact of these corrosion scale materials on ClO(2) decay was investigated in de-ionized water at 25 and 45 degrees C in a batch reactor with floating glass cover. ClO(2) decay was also investigated in a specially designed reactor made from the iron and copper pipes to obtain more realistic reaction rate data. Goethite (alpha-FeOOH) and magnetite (Fe(3)O(4)) were identified as the main components of iron corrosion scale. Cuprite (Cu(2)O) was identified as the major component of copper corrosion scale. The reaction rate of ClO(2) with both iron and copper oxides followed a first-order kinetics. First-order decay rate constants for ClO(2) reactions with iron corrosion scales obtained from the used service pipe and in the iron pipe reactor itself ranged from 0.025 to 0.083 min(-1). The decay rate constant for ClO(2) with Cu(2)O powder and in the copper pipe reactor was much smaller and it ranged from 0.0052 to 0.0062 min(-1). Based on these results, it can be concluded that the corrosion scale will cause much more significant ClO(2) loss in corroded iron pipes of the distribution system than the total organic carbon that may be present in finished water.
منابع مشابه
Impact of an Epoxy Pipe Lining Material on Distribution System Water Quality
Corrosion of iron and copper pipes can produce leaks and loss of efficiency in the water distribution system, elevate levels of contaminants at the tap, and cost billions of dollars annually in pipe replacement or rehabilitation. In situ pipe rehabilitation using cement mortar, polyurethane, and epoxy is a commonly employed method of dealing with aging yet structurally sound pipes because it is...
متن کاملSurvival of Mycobacterium avium in a model distribution system.
A pilot study was designed to examine the impact of nutrient levels, pipe materials, and disinfection on the survival of M. avium in model drinking water distribution system biofilms. Studies showed that the survival of the organism was dependant upon a complex interaction between pipe surface, nutrient levels, and disinfectants. The findings showed that when no disinfection was applied, M. avi...
متن کاملEffects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.
The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on th...
متن کاملLegionella control by chlorine dioxide in hospital water systems
egionnaires’ disease is caused by Legionella bacteria, which colonize 12–70% of hospital water systems (Lin et al, 1998b). Of the Legionnaires’ disease cases reported to the Centers for Disease Control and Prevention (CDC), 25–45% were hospital-acquired (Benin et al, 2002). Legionella and other opportunistic pathogens colonize water systems; cause pneumonia, wound, and bloodstream infections in...
متن کاملStrontium adsorption and desorption reactions in model drinking water distribution systems
Divalent cationic strontium (Sr2~-l adsorption to and desorption from iron corrosion products were examined in two model drinking water distribution systems (DWDS). One system was maintained with chlorine-disinfected drinking water and the other with the same water with secondary chloramine disinfection. Flow conditions simulated primary transmission lines (constant flow) and residential mains ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 42 1-2 شماره
صفحات -
تاریخ انتشار 2008